FREE VIBRATION OF PLATES BY THE HIGH ACCURACY QUADRATURE ELEMENT METHOD

A. G. Striz, W. L. Chen and C. W. Bert
School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019-0601, U.S.A.

(Received 8 June 1996, and in final form 4 November 1996)

Abstract

In this paper, a highly accurate and rapidly converging hybrid approach is presented for the Quadrature Element Method (QEM) solution of plate free vibration problems. The hybrid QEM essentially consists of a collocation method in conjunction with a Galerkin finite element technique, to combine the high accuracy of the Differential Quadrature Method (DQM) for the efficient solution of differential equations with the generality of the finite element formulation. This results in superior accuracy with fewer degrees of freedom than conventional FEM or FDM. A series of numerical tests is conducted to assess the performance of the quadrature plate element in free vibration problems. Anisotropic and stepped thickness plates are investigated as well as mixed boundary conditions and point supports at the edges. In all cases, the results obtained are quite accurate.

© 1997 Academic Press Limited

1. INTRODUCTION

The Differential Quadrature Method (DQM) [1] has been used in the past by various researchers (see, e.g., references [2-4]) for the efficient treatment of linear and non-linear static and dynamic structural analysis problems. All of the analyses yielded good to excellent results for only a few discrete points due to the use of the high order global basis functions in the computational domain. However, difficulties arise from using continuous basis functions in real-life structural analysis [5]. To alleviate the lack of versatility and the limitations of existing high order series type approximation methods, a 49 -degree-of-freedom (DOF) quadrature plate element, developed in reference [6], is used in free vibration problems in this study. One may refer to reference [6] for a more detailed description of the QEM.

2. FORMULATION OF THE QUADRATURE PLATE ELEMENT

The quadrature plate element is closely related to the serendipity Lagrangian element, but with internal points and using basis functions of a higher order. Numerical integration and differentiation or so-called "quadrature" procedures are used extensively in the element formulation to circumvent the problems caused by using high order basis functions. C^{0} and C^{1} inter-element compatibilities are met exactly for the mid-surface, while the other, C^{2} or even C^{3}, compatibilities are closely approximated at each inter-element boundary by the use of moderately high order basis functions. The 25 -node rectangular element has 49 DOF with four corner nodal points, and is shown in Figure 1. The displacement field of the 49-DOF quadrature plate element is expressed in terms of polynomial type basis functions, such that it can be assumed as

$$
\begin{align*}
w(x, y)= & \sum_{i=1,5,9,13}\left[N_{i 1} w_{i}+N_{i 2}(\partial w / \partial x)_{i}+N_{i 3}(\partial w / \partial y)_{i}+N_{i 4}\left(\partial^{2} w / \partial x \partial y\right)_{i}\right] \\
& +\sum_{i=2,3,4,10,11,12}\left[N_{i 1} w_{i}+N_{i 2}(\partial w / \partial y)_{i}\right]+\sum_{i=6,7,8,14,15,16}\left[N_{i 1} w_{i}+N_{i 2}(\partial w / \partial x)_{i}\right] \\
& +\sum_{i=17-25}\left[N_{i 1} w_{i}\right]=\lfloor N\rfloor\{w\} \tag{1}
\end{align*}
$$

where $N_{i j}$ are the corresponding basis functions, which can be determined from the specified collocation points. Also, $w_{i},(\partial w / \partial x)_{i},(\partial w / \partial y)_{i}$ and $\left(\partial^{2} w / \partial x \partial y\right)_{i}$ are the local degrees of freedom associated with node i.

3. FREE VIBRATION QUADRATURE PLATE ELEMENT

Similarly to the static plate element developed in reference [6], an extension of the method is applied to the formulation of plate free vibration models. The quadrature plate element is again derived based on the discrete Kirchhoff assumptions. Therefore, the governing equation of an isotropic thin plate in small deflection free vibration is given by

$$
\begin{equation*}
\frac{\partial^{4} w}{\partial x^{4}}+2 \frac{\partial^{4} w}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} w}{\partial y^{4}}=\rho h \frac{\partial^{2} w}{\partial t^{2}} \tag{2}
\end{equation*}
$$

As stated earlier, the 25-node rectangular element based on these assumptions has 49 DOF . Here, the consistent mass matrix can be obtained from

$$
\begin{equation*}
[M]=\int_{A}\lfloor N\rfloor^{\mathrm{T}}[\rho h]\lfloor N\rfloor \mathrm{d} A \tag{3}
\end{equation*}
$$

Therefore, the plate free vibration governing equation can be written in matrix form as

$$
\begin{equation*}
\left(\left[K_{s}\right]-\lambda^{2}\left[M_{s}\right]\right)\left\{w_{s}\right\}=\{0\} \tag{4}
\end{equation*}
$$

in which λ is defined as the frequency parameter, and a subscript s represents the whole discretized system.

Figure 1. The nodal configuration of a quadrature plate element.

Table 1
Convergence study of frequency parameter λ of simply supported square isotropic plate $\left(\lambda^{2}=\rho h \omega^{2} a^{4} / D\right)$, exact: $\omega_{m n}=\pi^{2}(D / \rho h)^{1 / 2}\left(m^{2} / a^{2}+n^{2} / b^{2}\right)$, with (m, n) being mode numbers

	Mesh			
Mode	$\overbrace{(1 \times 1)}$	(2×2)	(3×3)	Exact
1	19.7392	19.7392	19.7392	19.7392
2	49.4908	49.3480	49.3480	49.3480
3	79.1667	78.9568	78.9568	78.9568
4	100.117	98.7106	98.6961	98.6960
5	129.612	128.317	128.305	128.305
6	-	168.423	167.792	167.783
7	179.729	177.671	177.653	177.653
8	-	197.963	197.400	197.392

4. NUMERICAL APPLICATIONS

The overall stiffness and mass matrices in equation (4) are obtained by assembly procedures as used in the FEM. Various boundary conditions are investigated in the following study. For the QEM, the domain decomposition is achieved by using Galerkin finite element techniques; therefore, inter-element C^{2} and C^{3} compatibility conditions are not enforced here.

4.1. CONVERGENCE AND COMPARISON STUDIES

For isotropic plates with simple homogeneous boundary conditions on each side, a case with all sides simply supported is investigated, since exact solutions are readily available for direct comparison. The convergence characteristics of the natural frequencies are shown in Table 1 . Element meshes of 1×1 to 3×3 for an isotropic square plate are used for the analysis. It can be observed that convergence of the natural frequencies up to at least four significant figures is obtained for the lowest eight modes. In Table 2, the convergence characteristics of the frequency parameter of a clamped square plate are shown. The pattern of convergence achieved for the clamped boundary conditions is similar to that for the simply supported case.

Table 2
Convergence study of frequency parameter λ of clamped square isotropic plate $\left(\lambda^{2}=\rho h \omega^{2} a^{4} / D\right)$

	Mesh		
Mode	$\overbrace{(1 \times 1)}$	(2×2)	(3×3)
1	74.9900	35.9858	35.6852
2	108.591	73.3968	73.3942
3	137.293	108.227	108.218
4	138.070	131.604	131.582
5	168.819	132.230	132.207
6	-	165.027	165.005
7	224.178	212.088	210.547
8	220.178	220.043	

Table 3
Comparison study of frequency parameters λ of clamped square anisotropic plate $\left(\lambda^{2}=\rho h \omega^{2} a^{4} / D_{0}, D_{0}=E_{1} h^{3} /\left(12\left(1-v_{12} v_{21}\right)\right)\right.$

Orientation, θ (degrees)	Solution	Mode 1	Mode 2	Mode 3	Mode 4	Mode 5
0	DQM [4]	23.97	$31 \cdot 15$	$46 \cdot 38$	62.78	-
	Ritz [7]	23.97	$31 \cdot 15$	$46 \cdot 41$	62.77	-
	QEM (2×2)	23.97	$31 \cdot 15$	$46 \cdot 42$	62.77	$67 \cdot 20$
	QEM (3×3)	23.97	$31 \cdot 15$	46.41	62.77	$67 \cdot 20$
15	DQM	23.09	31.51	47.62	59.45	-
	Ritz	$23 \cdot 10$	31.52	47.65	59.46	-
	QEM (2×2)	23.09	31.51	47.64	59.45	$65 \cdot 78$
	QEM (3×3)	23.09	31.51	47.64	59.45	65.77
30	DQM	21.33	$33 \cdot 14$	50.63	51.79	-
	Ritz	21.35	$33 \cdot 18$	50.72	51.87	-
	QEM (2×2)	21.34	$33 \cdot 14$	50.64	51.82	71.62
	QEM (3×3)	21.33	$33 \cdot 14$	50.63	51.79	71.25
45	DQM	$20 \cdot 49$	34.96	$46 \cdot 85$	52.04	-
	Ritz	$20 \cdot 51$	$35 \cdot 01$	47.07	$52 \cdot 21$	-
	QEM (2×2)	20.49	34.96	46.92	52.06	69.99
	QEM (3×3)	$20 \cdot 49$	34.96	$46 \cdot 86$	52.04	$69 \cdot 88$

4.2. FREE VIBRATION ANALYSIS OF ANISOTROPIC PLATES

For the free vibration of anisotropic plates, the governing differential equation becomes

$$
\begin{equation*}
D_{11} \frac{\partial^{4} w}{\partial x^{4}}+4 D_{16} \frac{\partial^{4}}{\partial x^{3} \partial y}+2\left(D_{12}+2 D_{66}\right) \frac{\partial^{4} w}{\partial x^{2} \partial y^{2}}+4 D_{26} \frac{\partial^{4} w}{\partial x \partial y^{3}}+D_{22} \frac{\partial^{4} w}{\partial y^{4}}=\rho h \frac{\partial^{2} w}{\partial t^{2}} . \tag{5}
\end{equation*}
$$

The formulation for this problem is similar to that for the isotropic case. However, the plate stiffness matrix of the isotropic plate is replaced by

$$
[D]=\left[\begin{array}{lll}
D_{11} & D_{12} & D_{16} \tag{6}\\
D_{12} & D_{22} & D_{26} \\
D_{16} & D_{26} & D_{66}
\end{array}\right]=\frac{h^{3}}{12}\left[\begin{array}{lll}
\bar{Q}_{11} & \bar{Q}_{12} & \bar{Q}_{16} \\
\bar{Q}_{12} & \bar{Q}_{22} & \bar{Q}_{26} \\
\bar{Q}_{16} & \bar{Q}_{26} & \bar{Q}_{66}
\end{array}\right]
$$

where

$$
\begin{gather*}
\bar{Q}_{11}=Q_{11} \alpha^{4}+2\left(Q_{12}+2 Q_{66}\right) \alpha^{2} \mu^{2}+Q_{22} \mu^{4}, \\
\bar{Q}_{12}=\left(Q_{11}+Q_{22}-4 Q_{66}\right) \alpha^{2} \mu^{2}+Q_{12}\left(\alpha^{4}+\mu^{4}\right), \\
\bar{Q}_{22}=Q_{11} \mu^{4}+2\left(Q_{12}+2 Q_{66}\right) \alpha^{2} \mu^{2}+Q_{22} \alpha^{4}, \\
\bar{Q}_{16}=\left(Q_{11}-Q_{12}-2 Q_{66}\right) \alpha^{3} \mu+\left(Q_{12}-Q_{22}+2 Q_{66}\right) \alpha \mu^{3}, \\
\bar{Q}_{26}=\left(Q_{11}-Q_{12}-2 Q_{66}\right) \alpha \mu^{3}+\left(Q_{12}-Q_{22}+2 Q_{66}\right) \alpha^{3} \mu, \\
\bar{Q}_{66}=\left(Q_{11}+Q_{22}-2 Q_{12}-2 Q_{66}\right) \alpha^{2} \mu^{2}+Q_{66}\left(\alpha^{4}+\mu^{4}\right), \tag{7}
\end{gather*}
$$

and where $\alpha=\cos \theta, \mu=\sin \theta$ and

$$
\begin{gather*}
Q_{11}=\frac{E_{1}}{1-v_{12} v_{21}}, \quad Q_{12}=\frac{v_{21} E_{2}}{1-v_{12} v_{21}}, \\
Q_{22}=\frac{E_{2}}{1-v_{12} v_{21}}, \quad Q_{66}=G_{12}, \quad v_{21} E_{1}=v_{12} E_{2} . \tag{8}
\end{gather*}
$$

First direct comparison, natural frequencies are analyzed by the QEM for clamped square plates composed of an orthotropic material with the principal material axis at θ degrees from the x-axis. The specific material properties are $E_{1} / E_{2}=10, G_{12} / E_{2}=0.25$ and $v_{12}=0 \cdot 3$.
Because of the presence of the D_{16} and D_{26} odd derivative terms, the numerical approximation will converge more slowly than it does for the isotropic case. Approximate methods for the vibration analysis of anisotropic plates subject to simple boundary conditions are numerous. Amongst these methods, the high order approximation DQM provides a very compact and very efficient procedure for clamped anisotropic cases [4]. Numerical results obtained by the QEM and comparisons to the DQM and the Ritz method are given in Table 3. Close agreement is observed in all cases. It seems that the QEM again provides excellent convergence and efficiency in the application to anisotropic plate free vibration analyses. Although the DQM provides a simple and efficient means of solving some cases, it has limitations and restrictions in other applications. For instance, rapid convergence can be achieved only when the field variable and its derivative(s) are continuous in the computational domain which has to be bounded by simple boundary conditions, because of the use of series type global basis functions. In the following sections, the QEM will be employed to analyze a family of problems, such as mixed boundary conditions, stepped thickness plates, ordinary cantilever plates, and cantilever plates with point supports at the free edges, which are difficult for the application of the DQM. Compared with the DQM, the QEM provides a more versatile scheme in these applications.

4.3. APPLICATION TO MIXED BOUNDARY CONDITIONS

A high order approximation will deliver good convergence only under the conditions that the field variables in the computational domain are continuous and bounded by simple boundaries. The presence of singular points on the boundary will inflict relatively heavier losses on a high order approximation than on low order fine mesh numerical schemes because of the coarse mesh used. Although, in reference [8], Chebyshev grid spacing is

Figure 2. Mixed boundary conditions for square plates: (a) case 1; (b) case 2 . mाাा, clamped; -----, simply supported.

Table 4
Frequency parameters λ of isotropic square plates with mixed boundary conditions $\left(\lambda^{2}=\rho h \omega^{2} a^{4} / D\right)$

Solution	Mode 1	Mode 2	Mode 3	Mode 4	Mode 5
Ota [9]	25.5	-	-	-	-
Fan [10]	$26 \cdot 37$	$52 \cdot 23$	61.78	-	-
QEM (2×2)	26.29	$52 \cdot 13$	61.45	88.06	$100 \cdot 6$
QEM (3×3)	$26 \cdot 22$	$52 \cdot 17$	$61 \cdot 30$	88.17	$100 \cdot 6$
QEM (4×4)	26.02	$52 \cdot 13$	$60 \cdot 80$	88.13	$100 \cdot 6$
Ota [9]	$28 \cdot 3$	-	-	-	-
Fan [10]	28.65	54.00	68.58	-	-
Narita [11]	28.44	53.49	67.85	90.50	$100 \cdot 6$
QEM (2×2)	28.67	54.06	68.51	92.27	101.2
QEM (3×3)	28.62	$53 \cdot 82$	68.35	91.53	$100 \cdot 8$
QEM (4×4)	28.49	53.58	68.00	90.78	$100 \cdot 6$

effective in curing corner singularities, it is not effective for mixed boundary conditions due to the fixed nature of the collocation points.

In this section, two mixed boundary condition cases are presented (Figure 2) to illustrate the accuracy of the QEM. The boundary conditions and resulting fundamental frequency parameters are presented in Table 4 with comparisons to other series type methods or fine mesh numerical methods. Similar mode shapes are found for the two cases. It should be noted that the coarse mesh models show very good agreement with the comparison results from refined mesh analysis. Since the domain decomposition of the QEM can be chosen to provide high resolution in the critical regions adjacent to the singular points or where large gradients of field variables will occur, the QEM will be more versatile in applications than other series type high order numerical schemes.

4.4. APPLICATION TO STEPPED THICKNESS PLATES

A stepped thickness plate is considered in this section. The rectangular plate is thin, isotropic, fully simply supported and singly stepped, as shown in Figure 3.

This problem was solved by Chopra [12]; however, Warburton [13] pointed out that the interface compatibility conditions and, thus, the given numerical results were slightly in error. Later, Yuan et al. [14] recalculated the Levy type analytical solution and proposed a Rayleigh-Ritz method for comparison. The numerical results for the QEM, compared with the correct Levy type solutions and the Rayleigh-Ritz results obtained by Yuan, are given in Table 5. Here, the frequency parameters calculated by the QEM for a square plate

Figure 3. A simply supported stepped plate.

Table 5
Frequency parameters λ for square fully simply supported stepped plate with $x_{a}=0.5$ and $v=0 \cdot 3, \alpha=h_{2} / h_{1}\left(\lambda^{2}=\rho h_{1} \omega^{2} a^{4} / D_{0}\right)$

α	Solution	Mode 1	Mode 2	Mode 3	Mode 4	Mode 5	Mode 6	Mode 7	Mode 8
1.0	Yuan [14]	19.7392	49-3482	49-3486	78.9574	98.7102	$100 \cdot 117$	128.317	129.533
	QEM (2×2)	19.7392	49-3480	49•3480	78.9568	98.7106	98.7106	$128 \cdot 317$	$128 \cdot 317$
	Exact	19.7392	49•3480	49-3480	78.9568	98.6960	98.6960	128.305	128.305
$0 \cdot 9$	Yuan	18.7165	$46 \cdot 8060$	$46 \cdot 8948$	74.9799	$93 \cdot 4028$	94.6799	121.595	$123 \cdot 137$
	QEM	18.7165	$46 \cdot 8055$	$46 \cdot 8948$	74.9796	$93 \cdot 3620$	$93 \cdot 4170$	$121 \cdot 607$	121.970
	Exact	18.7165	$46 \cdot 8055$	$46 \cdot 8948$	74.9795	$93 \cdot 3484$	$93 \cdot 4023$	121.594	121.958
$0 \cdot 8$	Yuan	17.6240	$44 \cdot 1156$	$44 \cdot 4416$	$70 \cdot 8822$	87-3978	88.3631	114.340	116.785
	QEM	17.6240	$44 \cdot 1151$	$44 \cdot 4417$	$70 \cdot 8819$	87-1681	$87 \cdot 4141$	114.356	115.649
	Exact	17.6240	$44 \cdot 1151$	$44 \cdot 4416$	70.8818	$87 \cdot 1557$	87-3972	114.339	115.637
0.7	Yuan	16.4834	$41 \cdot 3105$	41.8701	$66 \cdot 4611$	$80 \cdot 8527$	81.2108	106-808	$110 \cdot 137$
	QEM	16.4834	41-3101	41.8701	$66 \cdot 4610$	80•1672	$80 \cdot 8730$	$106 \cdot 832$	109.027
	Exact	16.4834	$41 \cdot 3100$	$41 \cdot 8700$	$66 \cdot 4607$	80.1563	$80 \cdot 8522$	106-807	109.015
$0 \cdot 6$	Yuan	$15 \cdot 3505$	38.4398	38.9094	$61 \cdot 3990$	$73 \cdot 2279$	$74 \cdot 1927$	99.4490	$102 \cdot 916$
	QEM	$15 \cdot 3505$	38.4394	38.9095	61-3992	$72 \cdot 3570$	74.2190	99.4872	$101 \cdot 834$
	Exact	$15 \cdot 3505$	38.4394	38.9094	$61 \cdot 3986$	$72 \cdot 3476$	74.1923	99.4484	101.821
$0 \cdot 5$	Yuan	14.3184	$35 \cdot 1142$	$35 \cdot 4469$	$55 \cdot 5361$	$64 \cdot 1173$	68.0257	$92 \cdot 4050$	$95 \cdot 3841$
	QEM	14.3184	35.1145	$35 \cdot 4466$	$55 \cdot 5368$	$63 \cdot 4916$	68.0631	92.4766	94.3480
	Exact	14.3184	35•1142	$35 \cdot 4465$	55.5356	$63 \cdot 4834$	68.0253	$92 \cdot 4043$	94.3332

with central step $\left(x_{a}=0 \cdot 5\right)$ are based on a 2 by 2 element model. Compared with the exact solution, the QEM shows high accuracy even though the C^{2} and C^{3} continuity conditions are not explicitly enforced on the geometrically discontinuous interface. However, inter-element compatibility conditions for the QEM are achieved by the accurate continuous moderately high order basis functions in each subdomain, which not only assure C^{0} and C^{1} accuracy for the field variables but also deliver a good approximation for C^{2} and C^{3} compatibility for a fourth order equation system. The derivatives of the field variables on the element interfaces can be calculated by approximating them in an average sense from each subdomain.

(a)

(b)

Figure 4. (a) A rectangular plate with symmetrical point supports at the two parallel free edges. (b) A rectangular plate with symmetrical point supports at the free edge opposite to the clamped edge.

Table 6
The first five frequency parameters λ of a square cantilever plate $\left(\lambda^{2}=\rho h \omega^{2} a^{4} / D, 2 b / a=1\right.$, $v=0.333$)
(a) Symmetric modes

	QEM	QEM		
(1×1)	(2×2)	QEM (4×4)	Gorman $[16]$	
Mode	3.405	3.453	3.454	3.459
2	20.52	20.94	21.04	21.09
3	27.06	27.05	27.00	27.06
4	52.46	53.04	53.29	53.53
5	61.71	60.90	60.97	61.12

(b) Antisymmetric modes

Mode	QEM (1×1)	QEM (2×2)	QEM (4×4)	Gorman $[16]$
1	$8 \cdot 133$	$8 \cdot 283$	$8 \cdot 339$	8.356
2	$29 \cdot 70$	$30 \cdot 25$	$30 \cdot 45$	30.55
3	$65 \cdot 07$	$63 \cdot 58$	$63 \cdot 61$	63.67
4	70.45	$69 \cdot 82$	$70 \cdot 40$	$70 \cdot 64$
5	$95 \cdot 25$	92.04	$92 \cdot 11$	92.21

4.5. FREE VIBRATION ANALYSIS OF CANTILEVER PLATE AND CANTILEVER PLATE WITH SYMMETRIC

 POINT SUPPORTS AT THE EDGESThe cantilever plate problem is commonly encountered in engineering structural applications; however, one will find that it is difficult to apply either exact solutions of the Levy type or approximation series type solutions such as Rayleigh-Ritz or DQM to this type of problem because of the free edges. The difficulties and limitations encountered in solving free vibration cantilever plate problems by employing Rayleigh-Ritz and series methods were discussed in, for example, Bassily and Dickinson [15] and Gorman [16]. To

Table 7
The first three frequency parameters λ of a square cantilever plate with symmetrical point supports at the two parallel free edges $\left(\lambda^{2}=\rho h \omega^{2} a^{4} / D, 2 b / a=1, u=0 \cdot 5 a, v=0.333\right)$
(a) Symmetric modes

	QEM	QEM	QEM	Saliba
Mode	(1×1)	(2×2)	(4×4)	$[17]$
1	$6 \cdot 133$	$6 \cdot 070$	6.072	$6 \cdot 082$
2	$25 \cdot 39$	25.42	$25 \cdot 37$	$25 \cdot 42$
3	39.40	38.67	38.56	38.64

(b) Antisymmetric modes

	QEM	QEM	QEM	Saliba
Mode	(1×1)	(2×2)	(4×4)	$[17]$
1	$16 \cdot 24$	$16 \cdot 03$	$16 \cdot 03$	$16 \cdot 03$
2	$51 \cdot 86$	$50 \cdot 65$	$50 \cdot 74$	$50 \cdot 76$
3	$69 \cdot 04$	$68 \cdot 33$	$68 \cdot 67$	$68 \cdot 80$

Table 8
The first three frequency parameters λ of a square cantilever plate with symmetrical point supports at the edge opposite to the clamped side $\left(\lambda^{2}=\rho h \omega^{2} a^{4} / D, 2 b / a=1, v=0 \cdot 5 b\right.$,

$$
v=0 \cdot 333)
$$

(a) Symmetric modes

	QEM	QEM	QEM	Saliba
Mode	(1×1)	(2×2)	(4×4)	$[17]$
1	$14 \cdot 19$	$14 \cdot 39$	$14 \cdot 42$	$14 \cdot 44$
2	27.00	$26 \cdot 99$	$26 \cdot 95$	$27 \cdot 02$
3	$45 \cdot 22$	$45 \cdot 10$	$45 \cdot 06$	$45 \cdot 17$

(b) Antisymmetric modes

	QEM	QEM	QEM	Saliba
Mode	(1×1)	(2×2)	(4×4)	$[17]$
1	17.04	17.23	17.29	17.33
2	43.49	43.36	43.39	43.45
3	70.07	68.85	69.24	69.42

investigate the applicability and the accuracy of the QEM for this family of problems, various QEM grid models are obtained and compared with highly accurate analytical solutions proposed by Gorman [16] who exploited a superposition method. Furthermore, free vibrations of rectangular cantilever plates with symmetric point supports at the edges are investigated by the QEM. This family of problems also has analytical solutions obtained by Saliba [17], who essentially extended the application of the superposition method used by Gorman [16].

To formulate these problems, one may consider the rectangular plates shown in Figure 4. Three types of special cases are considered here: a rectangular plate with one edge clamped and the other three edges free, a cantilever plate with symmetric point supports at the parallel free edges as shown in Figure 4(a), and a rectangular plate with symmetric point supports at the free edge opposite to the clamped edge (Figure 4(b)).

Numerical results for these three cases are obtained by using different mesh QEM models. Although all three of these examples can be modelled by taking advantage of symmetry, as in reference [16], general formulations are considered here. Because the QEM uses the Galerkin finite element technique, applying the boundary conditions is quite simple and straightforward.
For the clamped edges, the degrees of freedom in rotation and displacement are constrained in constructing the stiffness matrix. For the symmetric point supports, only the displacements are constrained as the discretized points. Both square plates and rectangular plates of various aspect ratios are investigated. The numerical results for the square plate QEM models are listed in Tables 6, 7 and 8, respectively. Furthermore, the first five mode shapes for the plate with three free edges and the point supported cantilever plate examples are plotted in Figures 5, 6 and 7. The results show excellent mode shape definition despite the rather coarse meshes used (4×4). The frequency parameters for rectangular cantilever plates with symmetric point supports and for different aspect ratios are obtained by QEM 4×4 mesh models. The results are listed in Tables 9 and 10. All results show excellent comparison with results by Gorman [16] and Saliba [17].

5. CONCLUSIONS

The superior accuracy of the quadrature element method (QEM) as applied to the solutions of free plate vibration problems has been demonstrated in this study through numerical investigations. The plate element employs high order non-conventional displacement interpolations and renders quite satisfactory performance. Because of the use

Figure 5. Mode shapes of a square cantilever plate, QEM 4×4 : (a) mode $1, \lambda=3.454$; (b) mode $2, \lambda=8 \cdot 339$; (c) mode $3, \lambda=21 \cdot 04$; (d) mode $4, \lambda=30 \cdot 45$; (e) mode $5, \lambda=53 \cdot 29$.

(a)

(b)

(d)

(c)

(e)

Figure 6. Mode shapes of a square cantilever plate with symmetric point supports at the two parallel free edges, QEM $4 \times 4:(a)$ mode $1, \lambda=6 \cdot 072$; (b) mode $2, \lambda=16 \cdot 03$; (c) mode $3, \lambda=25 \cdot 37$; (d) mode $4, \lambda=38 \cdot 56$; (e) mode $5, \lambda=50 \cdot 74$.
of a high order approximation, full integration was carried out in calculating the individual element stiffnesses. Therefore, as in the FEM, the frequencies calculated by the QEM will approach the exact values from above. Despite being somewhat different from the conventional serendipity element, all interpolations and quadrature procedures can be presented in an explicit form that is well suited for implementation in a computer code.

The QEM is especially useful for discretization problems with discontinuities in the computational domain or in the boundary conditions. These problems typically yield solutions with large oscillations and unacceptable error convergence for other high order or series type numerical methods that use global basis functions. Here, the present element

Figure 7. Mode shapes of a square cantilever plate with symmetric point supports at the edge opposite to the clamped edge, QEM 4×4 : (a) mode $1, \lambda=14 \cdot 42$; (b) mode 2 , $\lambda=17 \cdot 29$; (c) mode $3, \lambda=26 \cdot 95$; (d) mode 4 , $\lambda=43 \cdot 39$; (e) mode $5, \lambda=45 \cdot 06$.

Table 9
The first three frequency parameters λ of rectangular cantilever plates with symmetric point supports at the two parallel free edges $\left(\lambda^{2}=\rho h \omega^{2} a^{4} / D, u=0.5 a, v=0.333\right)$
(a) Symmetric modes

Mode	Solution	$2 b / a$			
		1/3	1/2	2/1	3/1
1	QEM (4 $\times 4$)	$8 \cdot 820$	$8 \cdot 207$	$4 \cdot 327$	3.909
	Saliba [17]	$8 \cdot 820$	8.209	$4 \cdot 353$	3.939
2	QEM (4×4)	59.48	47.70	14.39	$9 \cdot 366$
	Saliba [17]	59.48	47.72	14.43	$9 \cdot 406$
3	QEM (4×4)	66.73	59.72	24.48	$19 \cdot 29$
	Saliba [17]	66.75	59.76	24.57	$19 \cdot 31$

(b) Antisymmetric modes

Mode		Solution	$\overbrace{1 / 3}$	$1 / 2$	$2 / 1$
	QEM (4×4)	$41 \cdot 52$	$29 \cdot 05$	$8 \cdot 368$	$5 / a$
	Saliba $[17]$	$41 \cdot 53$	$29 \cdot 05$	$8 \cdot 384$	$5 \cdot 857$
2	QEM (4×4)	$107 \cdot 5$	$86 \cdot 25$	$21 \cdot 95$	$13 \cdot 97$
	Saliba $[17]$	$107 \cdot 5$	$86 \cdot 33$	$21 \cdot 96$	$13 \cdot 98$
3	QEM (4×4)	$142 \cdot 4$	$106 \cdot 2$	$33 \cdot 16$	$24 \cdot 97$
3	Saliba $[17]$	$142 \cdot 4$	$106 \cdot 2$	$33 \cdot 06$	$24 \cdot 99$

Table 10
The first three frequency parameters λ of rectangular cantilever plates with symmetric point supports at the edge opposite to the clamped side $\left(\lambda^{2}=\rho h \omega^{2} a^{4} / D, v=0 \cdot 5 b, v=0.333\right)$
(a) Symmetric modes

Mode	Solution	$2 b / a$			
		1/3	1/2	2/1	3/1
1	QEM (4 $\times 4$)	14.81	$14 \cdot 82$	9.698	6.587
	Saliba [17]	14.81	14.82	9.775	6.693
2	QEM (4×4)	47.98	47.69	$13 \cdot 19$	$9 \cdot 301$
	Saliba [17]	47.99	47.72	13.24	$9 \cdot 369$
3	QEM (4 $\times 4$)	$100 \cdot 2$	90.96	27.59	$20 \cdot 34$
	Saliba [17]	$100 \cdot 2$	$91 \cdot 30$	$27 \cdot 62$	$20 \cdot 34$

(b) Antisymmetric modes

Mode	Solution	$2 b / a$			
		1/3	1/2	2/1	3/1
1	QEM (4 $\times 4$)	$40 \cdot 17$	28.32	$10 \cdot 64$	7.340
	Saliba [17]	$40 \cdot 18$	28.33	10.73	7.455
2	QEM (4 $\times 4$)	87.72	$66 \cdot 40$	23.04	17.28
	Saliba [17]	87.75	66.43	23.06	17.27
3	QEM (4×4)	$147 \cdot 3$	117.2	33.83	26.07
	Saliba [17]	$147 \cdot 3$	$117 \cdot 3$	$34 \cdot 23$	26.71

method can be used properly to isolate such discontinuities and attain excellent convergence.

REFERENCES

1. R. E. Bellman and J. Casti 1971 Journal of Mathematical Analysis and Applications 34, 235-238. Differential quadrature and long-term integration.
2. A. G. Striz, S. K. Jang and C. W. Bert 1988 Thin-Walled Structures 6, 51-62. Nonlinear bending analysis of thin circular plates by differential quadrature.
3. A. N. Sherbourne and M. D. Pandey 1991 Computers and Structures 40, 903-913. Differential quadrature method in the buckling analysis of beams and composite plates.
4. C. W. Bert, X. Wang and A. G. Striz 1993 International Journal of Solids and Structures 30, 1737-1744. Differential quadrature for static and free vibration analysis of anisotropic plates.
5. A. G. Striz, W. L. Chen and C. W. Bert 1994 International Journal of Solids and Structures 31, 2807-2818. Static analysis of structures by the quadrature element method (QEM).
6. A. G. Striz, W. L. Chen and C. W. Bert 1995 Proceedings, 36th Structures, Structural Dynamics, and Materials Conference, New Orleans, LA, 957-965. High-accuracy plane stress and plate elements in the quadrature element method.
7. J. M. Whitney 1987 Structural Analysis of Laminated Plates. Lancaster, PA: Technomic.
8. W. L. Chen, A. G. Striz and C. W. Bert 1995 Proceedings, ICES'95, Mauna Lani, Hawaii, 660-665. A new approach for solving fourth-order equations by the differential quadrature method.
9. T. Ota and M. Hamada 1969 Bulletin of the Japan Society of Mechanical Engineers 6, 397-403. Fundamental frequencies of simply supported but partially clamped square plates.
10. S. C. Fan and Y. K. Cheung 1984 Journal of Sound and Vibration 93, 81-94. Flexural free vibrations of rectangular plates with complex support conditions.
11. Y. Narita 1981 Journal of Sound and Vibration 72, 345-355. Application of a series-type method to vibration of orthotropic rectangular plates with mixed boundary conditions.
12. I. Chopra 1974 International Journal of Mechanical Science 16, 337-344. Vibration of stepped thickness plates.
13. G. B. Warburton 1975 International Journal of Mechanical Science 17, 239. Comment on "Vibration of stepped thickness plates" by I. Chopra.
14. J. Yuan and S. M. Dickinson 1992 Journal of Sound and Vibration 159, 39-55. The flexural vibration of rectangular plate systems approached by using artificial spring in the Rayleigh-Ritz method.
15. S. F. Bassily and S. M. Dickinson 1975 Journal of Applied Mechanics 42, 858-864. On the use of beam functions for problems of plates involving free edges.
16. D. J. Gorman 1976 Journal of Sound and Vibration 49, 453-463. Free vibration analysis of cantilever plates by the method of superposition.
17. H. T. Saliba 1984 Journal of Sound and Vibration 94, 381-395. Free vibration analysis of rectangular cantilever plates with symmetrically distributed point supports along the edges.
