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In this paper, a highly accurate and rapidly converging hybrid approach is presented for
the Quadrature Element Method (QEM) solution of plate free vibration problems. The
hybrid QEM essentially consists of a collocation method in conjunction with a Galerkin
finite element technique, to combine the high accuracy of the Differential Quadrature
Method (DQM) for the efficient solution of differential equations with the generality of the
finite element formulation. This results in superior accuracy with fewer degrees of freedom
than conventional FEM or FDM. A series of numerical tests is conducted to assess the
performance of the quadrature plate element in free vibration problems. Anisotropic and
stepped thickness plates are investigated as well as mixed boundary conditions and point
supports at the edges. In all cases, the results obtained are quite accurate.
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1. INTRODUCTION

The Differential Quadrature Method (DQM) [1] has been used in the past by various
researchers (see, e.g., references [2–4]) for the efficient treatment of linear and non-linear
static and dynamic structural analysis problems. All of the analyses yielded good to
excellent results for only a few discrete points due to the use of the high order global basis
functions in the computational domain. However, difficulties arise from using continuous
basis functions in real-life structural analysis [5]. To alleviate the lack of versatility and
the limitations of existing high order series type approximation methods, a
49-degree-of-freedom (DOF) quadrature plate element, developed in reference [6], is used
in free vibration problems in this study. One may refer to reference [6] for a more detailed
description of the QEM.

2. FORMULATION OF THE QUADRATURE PLATE ELEMENT

The quadrature plate element is closely related to the serendipity Lagrangian element,
but with internal points and using basis functions of a higher order. Numerical integration
and differentiation or so-called ‘‘quadrature’’ procedures are used extensively in the
element formulation to circumvent the problems caused by using high order basis
functions. C0 and C1 inter-element compatibilities are met exactly for the mid-surface,
while the other, C2 or even C3, compatibilities are closely approximated at each
inter-element boundary by the use of moderately high order basis functions. The 25-node
rectangular element has 49 DOF with four corner nodal points, and is shown in Figure
1. The displacement field of the 49-DOF quadrature plate element is expressed in terms
of polynomial type basis functions, such that it can be assumed as
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w(x, y)= s
i=1,5,9,13

[Ni1wi +Ni2(1w/1x)i +Ni3(1w/1y)i +Ni4(12w/1x 1y)i ]

+ s
i=2,3,4,10,11,12

[Ni1wi +Ni2(1w/1y)i ]+ s
i=6,7,8,14,15,16

[Ni1wi +Ni2(1w/1x)i ]

+ s
i=17–25

[Ni1wi ]= 6N7{w}, (1)

where Nij are the corresponding basis functions, which can be determined from the
specified collocation points. Also, wi , (1w/1x)i , (1w/1y)i and (12w/1x 1y)i are the local
degrees of freedom associated with node i.

3. FREE VIBRATION QUADRATURE PLATE ELEMENT

Similarly to the static plate element developed in reference [6], an extension of the
method is applied to the formulation of plate free vibration models. The quadrature plate
element is again derived based on the discrete Kirchhoff assumptions. Therefore, the
governing equation of an isotropic thin plate in small deflection free vibration is given by

14w
1x4 +2

14w
1x2 1y2 +

14w
1y4 = rh

12w
1t2 . (2)

As stated earlier, the 25-node rectangular element based on these assumptions has 49 DOF.
Here, the consistent mass matrix can be obtained from

[M]=gA

6N7T[rh]6N7 dA. (3)

Therefore, the plate free vibration governing equation can be written in matrix form as

([Ks ]− l2[Ms ]){ws}= {0}, (4)

in which l is defined as the frequency parameter, and a subscript s represents the whole
discretized system.

Figure 1. The nodal configuration of a quadrature plate element.
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T 1

Convergence study of frequency parameter l of simply supported square isotropic plate
(l2 = rhv2a4/D), exact: vmn = p2(D/rh)1/2(m2/a2 + n2/b2), with (m, n) being mode numbers

Mesh
ZXXXXXXXXXCXXXXXXXXXV

Mode (1×1) (2×2) (3×3) Exact

1 19·7392 19·7392 19·7392 19·7392
2 49·4908 49·3480 49·3480 49·3480
3 79·1667 78·9568 78·9568 78·9568
4 100·117 98·7106 98·6961 98·6960
5 129·612 128·317 128·305 128·305
6 — 168·423 167·792 167·783
7 179·729 177·671 177·653 177·653
8 — 197·963 197·400 197·392

4. NUMERICAL APPLICATIONS

The overall stiffness and mass matrices in equation (4) are obtained by assembly
procedures as used in the FEM. Various boundary conditions are investigated in the
following study. For the QEM, the domain decomposition is achieved by using Galerkin
finite element techniques; therefore, inter-element C2 and C3 compatibility conditions are
not enforced here.

4.1.    

For isotropic plates with simple homogeneous boundary conditions on each side, a case
with all sides simply supported is investigated, since exact solutions are readily available
for direct comparison. The convergence characteristics of the natural frequencies are
shown in Table 1. Element meshes of 1×1 to 3×3 for an isotropic square plate are used
for the analysis. It can be observed that convergence of the natural frequencies up to at
least four significant figures is obtained for the lowest eight modes. In Table 2, the
convergence characteristics of the frequency parameter of a clamped square plate are
shown. The pattern of convergence achieved for the clamped boundary conditions is
similar to that for the simply supported case.

T 2

Convergence study of frequency parameter l of clamped square isotropic plate
(l2 = rhv2a4/D)

Mesh
ZXXXXXXXXXXXXCXXXXXXXXXXXXV

Mode (1×1) (2×2) (3×3)

1 35·9900 35·9858 35·6852
2 74·1843 73·3968 73·3942
3 108·591 108·227 108·218
4 137·293 131·604 131·582
5 138·070 132·230 132·207
6 168·819 165·027 165·005
7 — 212·088 210·547
8 224·178 220·178 220·043
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T 3

Comparison study of frequency parameters l of clamped square anisotropic plate
(l2 = rhv2a4/D0, D0 =E1h3/(12(1− n12n21))

Orientation,
u (degrees) Solution Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

0 DQM [4] 23·97 31·15 46·38 62·78 —
Ritz [7] 23·97 31·15 46·41 62·77 —
QEM (2×2) 23·97 31·15 46·42 62·77 67·20
QEM (3×3) 23·97 31·15 46·41 62·77 67·20

15 DQM 23·09 31·51 47·62 59·45 —
Ritz 23·10 31·52 47·65 59·46 —
QEM (2×2) 23·09 31·51 47·64 59·45 65·78
QEM (3×3) 23·09 31·51 47·64 59·45 65·77

30 DQM 21·33 33·14 50·63 51·79 —
Ritz 21·35 33·18 50·72 51·87 —
QEM (2×2) 21·34 33·14 50·64 51·82 71·62
QEM (3×3) 21·33 33·14 50·63 51·79 71·25

45 DQM 20·49 34·96 46·85 52·04 —
Ritz 20·51 35·01 47·07 52·21 —
QEM (2×2) 20·49 34·96 46·92 52·06 69·99
QEM (3×3) 20·49 34·96 46·86 52·04 69·88

4.2.      

For the free vibration of anisotropic plates, the governing differential equation becomes

D11
14w
1x4 +4D16

14

1x3 1y
+2(D12 +2D66)

14w
1x2 1y2 +4D26

14w
1x 1y3 +D22

14w
1y4 = rh

12w
1t2 . (5)

The formulation for this problem is similar to that for the isotropic case. However, the
plate stiffness matrix of the isotropic plate is replaced by

[D]= &D11 D12 D16

D12 D22 D26

D16 D26 D66'= h3

12 &Q� 11 Q� 12 Q� 16

Q� 12 Q� 22 Q� 26

Q� 16 Q� 26 Q� 66', (6)

where

Q� 11 =Q11a
4 +2(Q12 +2Q66)a2m2 +Q22m

4,

Q� 12 = (Q11 +Q22 −4Q66)a2m2 +Q12(a4 + m4),

Q� 22 =Q11m
4 +2(Q12 +2Q66)a2m2 +Q22a

4,

Q� 16 = (Q11 −Q12 −2Q66)a3m+(Q12 −Q22 +2Q66)am3,

Q� 26 = (Q11 −Q12 −2Q66)am3 + (Q12 −Q22 +2Q66)a3m,

Q� 66 = (Q11 +Q22 −2Q12 −2Q66)a2m2 +Q66(a4 + m4), (7)
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and where a=cos u, m=sin u and

Q11 =
E1

1− n12n21
, Q12 =

n21E2

1− n12n21
,

Q22 =
E2

1− n12n21
, Q66 =G12, n21E1 = n12E2. (8)

First direct comparison, natural frequencies are analyzed by the QEM for clamped square
plates composed of an orthotropic material with the principal material axis at u degrees
from the x-axis. The specific material properties are E1/E2 =10, G12/E2 =0·25 and
n12 =0·3.

Because of the presence of the D16 and D26 odd derivative terms, the numerical
approximation will converge more slowly than it does for the isotropic case. Approximate
methods for the vibration analysis of anisotropic plates subject to simple boundary
conditions are numerous. Amongst these methods, the high order approximation DQM
provides a very compact and very efficient procedure for clamped anisotropic cases [4].
Numerical results obtained by the QEM and comparisons to the DQM and the Ritz
method are given in Table 3. Close agreement is observed in all cases. It seems that the
QEM again provides excellent convergence and efficiency in the application to anisotropic
plate free vibration analyses. Although the DQM provides a simple and efficient means
of solving some cases, it has limitations and restrictions in other applications. For instance,
rapid convergence can be achieved only when the field variable and its derivative(s) are
continuous in the computational domain which has to be bounded by simple boundary
conditions, because of the use of series type global basis functions. In the following
sections, the QEM will be employed to analyze a family of problems, such as mixed
boundary conditions, stepped thickness plates, ordinary cantilever plates, and cantilever
plates with point supports at the free edges, which are difficult for the application of the
DQM. Compared with the DQM, the QEM provides a more versatile scheme in these
applications.

4.3.     

A high order approximation will deliver good convergence only under the conditions
that the field variables in the computational domain are continuous and bounded by simple
boundaries. The presence of singular points on the boundary will inflict relatively heavier
losses on a high order approximation than on low order fine mesh numerical schemes
because of the coarse mesh used. Although, in reference [8], Chebyshev grid spacing is

Figure 2. Mixed boundary conditions for square plates: (a) case 1; (b) case 2. –––, clamped; – – – – , simply
supported.

///////
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T 4

Frequency parameters l of isotropic square plates with mixed boundary conditions
(l2 = rhv2a4/D)

Solution Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Ota [9] 25·5 — — — —
Fan [10] 26·37 52·23 61·78 — —
QEM (2×2) 26·29 52·13 61·45 88·06 100·6
QEM (3×3) 26·22 52·17 61·30 88·17 100·6
QEM (4×4) 26·02 52·13 60·80 88·13 100·6

Ota [9] 28·3 — — — —
Fan [10] 28·65 54·00 68·58 — —
Narita [11] 28·44 53·49 67·85 90·50 100·6
QEM (2×2) 28·67 54·06 68·51 92·27 101·2
QEM (3×3) 28·62 53·82 68·35 91·53 100·8
QEM (4×4) 28·49 53·58 68·00 90·78 100·6

effective in curing corner singularities, it is not effective for mixed boundary conditions
due to the fixed nature of the collocation points.

In this section, two mixed boundary condition cases are presented (Figure 2) to illustrate
the accuracy of the QEM. The boundary conditions and resulting fundamental frequency
parameters are presented in Table 4 with comparisons to other series type methods or fine
mesh numerical methods. Similar mode shapes are found for the two cases. It should be
noted that the coarse mesh models show very good agreement with the comparison results
from refined mesh analysis. Since the domain decomposition of the QEM can be chosen
to provide high resolution in the critical regions adjacent to the singular points or where
large gradients of field variables will occur, the QEM will be more versatile in applications
than other series type high order numerical schemes.

4.4.     

A stepped thickness plate is considered in this section. The rectangular plate is thin,
isotropic, fully simply supported and singly stepped, as shown in Figure 3.

This problem was solved by Chopra [12]; however, Warburton [13] pointed out that the
interface compatibility conditions and, thus, the given numerical results were slightly in
error. Later, Yuan et al. [14] recalculated the Levy type analytical solution and proposed
a Rayleigh–Ritz method for comparison. The numerical results for the QEM, compared
with the correct Levy type solutions and the Rayleigh–Ritz results obtained by Yuan, are
given in Table 5. Here, the frequency parameters calculated by the QEM for a square plate

Figure 3. A simply supported stepped plate.
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T 5

Frequency parameters l for square fully simply supported stepped plate with xa =0·5 and
n=0·3, a= h2/h1 (l2 = rh1v

2a4/D0)

a Solution Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8

1·0 Yuan [14] 19·7392 49·3482 49·3486 78·9574 98·7102 100·117 128·317 129·533
QEM (2×2) 19·7392 49·3480 49·3480 78·9568 98·7106 98·7106 128·317 128·317
Exact 19·7392 49·3480 49·3480 78·9568 98·6960 98·6960 128·305 128·305

0·9 Yuan 18·7165 46·8060 46·8948 74·9799 93·4028 94·6799 121·595 123·137
QEM 18·7165 46·8055 46·8948 74·9796 93·3620 93·4170 121·607 121·970
Exact 18·7165 46·8055 46·8948 74·9795 93·3484 93·4023 121·594 121·958

0·8 Yuan 17·6240 44·1156 44·4416 70·8822 87·3978 88·3631 114·340 116·785
QEM 17·6240 44·1151 44·4417 70·8819 87·1681 87·4141 114·356 115·649
Exact 17·6240 44·1151 44·4416 70.8818 87·1557 87·3972 114·339 115·637

0·7 Yuan 16·4834 41·3105 41·8701 66·4611 80·8527 81·2108 106·808 110·137
QEM 16·4834 41·3101 41·8701 66·4610 80·1672 80·8730 106·832 109·027
Exact 16·4834 41·3100 41·8700 66·4607 80·1563 80·8522 106·807 109·015

0·6 Yuan 15·3505 38·4398 38·9094 61·3990 73·2279 74·1927 99·4490 102·916
QEM 15·3505 38·4394 38·9095 61·3992 72·3570 74·2190 99·4872 101·834
Exact 15·3505 38·4394 38·9094 61·3986 72·3476 74·1923 99·4484 101·821

0·5 Yuan 14·3184 35·1142 35·4469 55·5361 64·1173 68·0257 92·4050 95·3841
QEM 14·3184 35·1145 35·4466 55·5368 63·4916 68·0631 92·4766 94·3480
Exact 14·3184 35·1142 35·4465 55·5356 63·4834 68·0253 92·4043 94·3332

with central step (xa =0·5) are based on a 2 by 2 element model. Compared with the exact
solution, the QEM shows high accuracy even though the C2 and C3 continuity conditions
are not explicitly enforced on the geometrically discontinuous interface. However,
inter-element compatibility conditions for the QEM are achieved by the accurate
continuous moderately high order basis functions in each subdomain, which not only
assure C0 and C1 accuracy for the field variables but also deliver a good approximation
for C2 and C3 compatibility for a fourth order equation system. The derivatives of the field
variables on the element interfaces can be calculated by approximating them in an average
sense from each subdomain.

Figure 4. (a) A rectangular plate with symmetrical point supports at the two parallel free edges. (b) A
rectangular plate with symmetrical point supports at the free edge opposite to the clamped edge.
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T 6

The first five frequency parameters l of a square cantilever plate (l2 = rhv2a4/D, 2b/a=1,
n=0·333)

(a) Symmetric modes

QEM QEM QEM Gorman
Mode (1×1) (2×2) (4×4) [16]

1 3·405 3·453 3·454 3·459
2 20·52 20·94 21·04 21·09
3 27·06 27·05 27·00 27·06
4 52·46 53·04 53·29 53·53
5 61·71 60·90 60·97 61·12

(b) Antisymmetric modes

QEM QEM QEM Gorman
Mode (1×1) (2×2) (4×4) [16]

1 8·133 8·283 8·339 8·356
2 29·70 30·25 30·45 30·55
3 65·07 63·58 63·61 63·67
4 70·45 69·82 70·40 70·64
5 95·25 92·04 92·11 92·21

4.5.           

    

The cantilever plate problem is commonly encountered in engineering structural
applications; however, one will find that it is difficult to apply either exact solutions of the
Levy type or approximation series type solutions such as Rayleigh–Ritz or DQM to this
type of problem because of the free edges. The difficulties and limitations encountered in
solving free vibration cantilever plate problems by employing Rayleigh–Ritz and series
methods were discussed in, for example, Bassily and Dickinson [15] and Gorman [16]. To

T 7

The first three frequency parameters l of a square cantilever plate with symmetrical point
supports at the two parallel free edges (l2 = rhv2a4/D, 2b/a=1, u=0·5a, n=0·333)

(a) Symmetric modes

QEM QEM QEM Saliba
Mode (1×1) (2×2) (4×4) [17]

1 6·133 6·070 6·072 6·082
2 25·39 25·42 25·37 25·42
3 39·40 38·67 38·56 38·64

(b) Antisymmetric modes

QEM QEM QEM Saliba
Mode (1×1) (2×2) (4×4) [17]

1 16·24 16·03 16·03 16·03
2 51·86 50·65 50·74 50·76
3 69·04 68·33 68·67 68·80
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T 8

The first three frequency parameters l of a square cantilever plate with symmetrical point
supports at the edge opposite to the clamped side (l2 = rhv2a4/D, 2b/a=1, v=0·5b,

n=0·333)

(a) Symmetric modes

QEM QEM QEM Saliba
Mode (1×1) (2×2) (4×4) [17]

1 14·19 14·39 14·42 14·44
2 27·00 26·99 26·95 27·02
3 45·22 45·10 45·06 45·17

(b) Antisymmetric modes

QEM QEM QEM Saliba
Mode (1×1) (2×2) (4×4) [17]

1 17·04 17·23 17·29 17·33
2 43·49 43·36 43·39 43·45
3 70·07 68·85 69·24 69·42

investigate the applicability and the accuracy of the QEM for this family of problems,
various QEM grid models are obtained and compared with highly accurate analytical
solutions proposed by Gorman [16] who exploited a superposition method. Furthermore,
free vibrations of rectangular cantilever plates with symmetric point supports at the edges
are investigated by the QEM. This family of problems also has analytical solutions
obtained by Saliba [17], who essentially extended the application of the superposition
method used by Gorman [16].

To formulate these problems, one may consider the rectangular plates shown in Figure
4. Three types of special cases are considered here: a rectangular plate with one edge
clamped and the other three edges free, a cantilever plate with symmetric point supports
at the parallel free edges as shown in Figure 4(a), and a rectangular plate with symmetric
point supports at the free edge opposite to the clamped edge (Figure 4(b)).

Numerical results for these three cases are obtained by using different mesh QEM
models. Although all three of these examples can be modelled by taking advantage of
symmetry, as in reference [16], general formulations are considered here. Because the QEM
uses the Galerkin finite element technique, applying the boundary conditions is quite
simple and straightforward.

For the clamped edges, the degrees of freedom in rotation and displacement are
constrained in constructing the stiffness matrix. For the symmetric point supports, only
the displacements are constrained as the discretized points. Both square plates and
rectangular plates of various aspect ratios are investigated. The numerical results for the
square plate QEM models are listed in Tables 6, 7 and 8, respectively. Furthermore, the
first five mode shapes for the plate with three free edges and the point supported cantilever
plate examples are plotted in Figures 5, 6 and 7. The results show excellent mode shape
definition despite the rather coarse meshes used (4×4). The frequency parameters for
rectangular cantilever plates with symmetric point supports and for different aspect ratios
are obtained by QEM 4×4 mesh models. The results are listed in Tables 9 and 10. All
results show excellent comparison with results by Gorman [16] and Saliba [17].
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5. CONCLUSIONS

The superior accuracy of the quadrature element method (QEM) as applied to the
solutions of free plate vibration problems has been demonstrated in this study through
numerical investigations. The plate element employs high order non-conventional
displacement interpolations and renders quite satisfactory performance. Because of the use

Figure 5. Mode shapes of a square cantilever plate, QEM 4×4: (a) mode 1, l=3·454; (b) mode 2, l=8·339;
(c) mode 3, l=21·04; (d) mode 4, l=30·45; (e) mode 5, l=53·29.
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Figure 6. Mode shapes of a square cantilever plate with symmetric point supports at the two parallel free edges,
QEM 4×4: (a) mode 1, l=6·072; (b) mode 2, l=16·03; (c) mode 3, l=25·37; (d) mode 4, l=38·56; (e) mode
5, l=50·74.

of a high order approximation, full integration was carried out in calculating the individual
element stiffnesses. Therefore, as in the FEM, the frequencies calculated by the QEM will
approach the exact values from above. Despite being somewhat different from the
conventional serendipity element, all interpolations and quadrature procedures can be
presented in an explicit form that is well suited for implementation in a computer code.
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The QEM is especially useful for discretization problems with discontinuities in the
computational domain or in the boundary conditions. These problems typically yield
solutions with large oscillations and unacceptable error convergence for other high order
or series type numerical methods that use global basis functions. Here, the present element

Figure 7. Mode shapes of a square cantilever plate with symmetric point supports at the edge opposite to the
clamped edge, QEM 4×4: (a) mode 1, l=14·42; (b) mode 2, l=17·29; (c) mode 3, l=26·95; (d) mode 4,
l=43·39; (e) mode 5, l=45·06.
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T 9

The first three frequency parameters l of rectangular cantilever plates with symmetric point
supports at the two parallel free edges (l2 = rhv2a4/D, u=0·5a, n=0·333)

(a) Symmetric modes

2b/a
ZXXXXXXXXXXXCXXXXXXXXXXV

Mode Solution 1/3 1/2 2/1 3/1

1 QEM (4×4) 8·820 8·207 4·327 3·909
Saliba [17] 8·820 8·209 4·353 3·939

2 QEM (4×4) 59·48 47·70 14·39 9·366
Saliba [17] 59·48 47·72 14·43 9·406

3 QEM (4×4) 66·73 59·72 24·48 19·29
Saliba [17] 66·75 59·76 24·57 19·31

(b) Antisymmetric modes

2b/a
ZXXXXXXXXXXCXXXXXXXXXXV

Mode Solution 1/3 1/2 2/1 3/1

1 QEM (4×4) 41·52 29·05 8·368 5·842
Saliba [17] 41·53 29·05 8·384 5·857

2 QEM (4×4) 107·5 86·25 21·95 13·97
Saliba [17] 107·5 86·33 21·96 13·98

3 QEM (4×4) 142·4 106·2 33·16 24·97
3 Saliba [17] 142·4 106·2 33·06 24·99

T 10

The first three frequency parameters l of rectangular cantilever plates with symmetric point
supports at the edge opposite to the clamped side (l2 = rhv2a4/D, v=0·5b, n=0·333)

(a) Symmetric modes

2b/a
ZXXXXXXXXXXCXXXXXXXXXXV

Mode Solution 1/3 1/2 2/1 3/1

1 QEM (4×4) 14·81 14·82 9·698 6·587
Saliba [17] 14·81 14·82 9·775 6·693

2 QEM (4×4) 47·98 47·69 13·19 9·301
Saliba [17] 47·99 47·72 13·24 9·369

3 QEM (4×4) 100·2 90·96 27·59 20·34
Saliba [17] 100·2 91·30 27·62 20·34

(b) Antisymmetric modes

2b/a
ZXXXXXXXXXXCXXXXXXXXXXV

Mode Solution 1/3 1/2 2/1 3/1

1 QEM (4×4) 40·17 28·32 10·64 7·340
Saliba [17] 40·18 28·33 10·73 7·455

2 QEM (4×4) 87·72 66·40 23·04 17·28
Saliba [17] 87·75 66·43 23·06 17·27

3 QEM (4×4) 147·3 117·2 33·83 26·07
Saliba [17] 147·3 117·3 34·23 26·71
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method can be used properly to isolate such discontinuities and attain excellent
convergence.
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